
Southwestern Europe Regional Contest

Solution outlines
November 17, 2013

1 Congratulations!

Congratulations and thank you for participating in the 2013 Southwestern Europe Programming
Contest! We hope you enjoyed the contest and your stay in Valencia.

In this text you will find short explanations of the problems you just tried to solve in the
contest. All the problems will be published at the ICPC Live Archive in a few weeks.

Have a safe trip back home.

2 The problems team

Contest Director: Jon Ander Gómez Adrián
Chief Judge: Ximo Planells

Problem Set team:

• Paco Álvaro

• Darya Bogdanova

• Enrique Flores

• Sergio García

• Jon Ander Gómez

• Mahbubul Hasan

• Shiplu Jawlader

• Derek Kisman

• Rujia Liu

• Abdullah al Mahmud

• Shahriar Manzoor

• Carlos Martínez

• Joan Pastor

• Ximo Planells

• Mario Rodríguez

• Emilio Vivancos

Judges:

• Paco Álvaro

• Enrique Flores

• Carlos Martínez

• Joan Pastor

• Moisés Pastor

• Emilio Vivancos

1

3 Problem A: Mixing Colours

Author: Paco Álvaro
Type: Dynamic Programming

This problem can be solved using Dynamic Programming. Concretely, the well-known Cocke-
Younger-Kasami (CYK) algorithm. We only have to transform the rules to a Context-Free
Grammar duplicating each colour combination. From Blue + Yellow → Green we create:

• Green → Blue Yellow

• Green → Yellow Blue

If we have a long sequence of colours, the resulting probability can be really close to zero
and produce numerical errors. We can solve this problem by maximizing the logarithm of the
probability

ĉ = argmax
c

p(c) = argmax
c

log(p(c))

Thus, the computation of the probability

p(c) = p(a) · p(b)

becomes
log(p(c)) = log(p(a)) + log(p(b))

More information:

• Context-free grammar at Wikipedia: http://en.wikipedia.org/wiki/Context-free_grammar

• CYK algorithm at Wikipedia: http://en.wikipedia.org/wiki/CYK_algorithm

• Explanation by Chris Manning: http://www.youtube.com/watch?v=hq80J8kBg-Y

4 Problem B: It can be Arranged

Author: Shiplu Hawlader
Type: Maximum Flow, Binary Search

This problem can be solved using maximum flow. Take each course as a node and add an
edge from source with capacity equals to the number of rooms required for that course. Also, if
it is possible to go from course i to course j, add an edge from Ni to Nj with infinite capacity.
The following network shows the configuration for the second test case

N1 N3

inf

t

inf

N2

inf

inf

N3
inf

N4

inf

N1

T

1 0

N2 3

1 5

N4

7
S

1 0

3

1 5

7

s
C

inf

inf

inf

inf

2

The network has the course nodes duplicated such that it has been split into two parts. Also,
the edge from node t to s has capacity C, which represents the maximum number of classes
hired.

Initially the number of classes is the sum of all the classes required by the courses. In this
example, C will be initially 35. If we run maximum flow in this network from S to T with
C = 35, when the algorithm finishes we only need to check if the capacities from S to each
course Ni have been satisfied. Finally, run a binary search with C ∈ [1, 35] to find the minimum
value of C that satisfies all courses.

More information:

• Maximum flow at Wikipedia: http://en.wikipedia.org/wiki/Maximum_flow_problem

• Chapter 26 from the book Introduction to Algorithms by Cormen et al.

5 Problem C: Shopping Malls

Author: Jon Ander Gómez
Type: Graphs

This is a typical shortest-path problem although some edges have different cost depending
on the direction you walk them. You just need to create a directed graph with the restrictions
of the problem.

The problem can be solved using Dijkstra algorithm’s or Floyd-Warshall.

More information:

• Floyd-Warshall at Wikipedia: http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm

• Dijkstra’s algorithm at Wikipedia: http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

6 Problem D: Decoding the Hallway

Author: Mahbubul Hasan
Type: Ad Hoc

Slow Solution:

If we check the first iterations we will find patterns.

L
(L)L(R)

(LLR)L(LRR)

so if the previous string is S, the new string would be SL(reverse of complement of S).
To solve this problem, we loop through S to find some L and consider it as the middle point

at nth stage. Then we check if the left portion is suffix of n − 1 and right portion is suffix of
reverse of complement of n− 1.

Now considering the size of the n − 1th string, we can solve this part using the solution of
"encoding" problem.

3

Fast Solution:

Let’s define couple of notation before approaching the solution: {S} = reverse of string S.
For example, if S = LLR then {S} = RLL. [S] = complement of string S. That is L → R,
R→ L. So if S = LLR, [S] = RRL. We will use (S) just to group a string. No special meaning
Now if we evaluate the strings for different n, we will see a pattern. For n = 1, L For n = 2, LLR
For n = 3, LLRLLRR

The pattern can be noticed if the strings are grouped: L, (L)L(R), (LLR)L(LRR).
So, if S is the string for n, then for n + 1 the string will be: (S)L[{S}]. Let us denote Sn

by nth string. Now, the crucial observation is that, All the substrings of length |Sn| of |Sn+3|
appears in |Sn|. I would urge the alternate writer to convince yourself/prove it before code it
up.

The proof is quite simple,
Sn = S
Sn+1 = (S)L[{S}]
Sn+2 = . . .
and once you find the expression for Sn+3 you will be able to convince yourself the claim.
So the solution is to find smallest n, such that, |Sn| >= 100. Then, you just pre generate S1

to Sn+3 and you just check if the given pattern is substring of Si for i ≤ n.

7 Problem E: Joe is Learning to Speak

Author: Jon Ander Gómez
Type: Data structures

The subsequences of n words is known as n-grams in computational linguistics and proba-
bility. We just need an efficient data structure able to store the n-grams up to the number that
Joe can memorize. A hash table should be enough.

For each sentence we check if any word is unknown. After updating the 1-grams with the
new words, we check 2-grams, 3-grams, etc.

More information:

• N-grams: http://en.wikipedia.org/wiki/N-gram

• Prof Jurafsky’s book: Speech and Language Processing. 2nd Edition.

• Search StackOverflow for interesting discussions about hashing functions.

8 Problem F: Odd and Even Zeroes

Author: Shahriar Manzoor
Type: Number Theory

First of all, computing the number of trailing zeroes in the n! is counting how many times 5
and all its powers lower than n are contained in n, the sum is the number trailing zeroes. For
instance, if we have n = 99, 99! will have the following number of trailing zeroes:

(5 ∗ 19 ≤ 99) and (25 ∗ 3 ≤ 99) ⇒ 19 + 3 = 22 trailing zeroes.
If we observe the evolution of the number of trailing zeroes we can see the following:

4

0 0 1 0
1 0 2 0
2 0 3 0
3 0 4 0
4 0 5 0
5 1 5 1
6 1 5 1
7 1 5 1
8 1 5 1
9 1 5 1
10 2 6 0
11 2 7 0
12 2 8 0
13 2 9 0
14 2 10 0
15 3 10 1
16 3 10 1
17 3 10 1
18 3 10 1
19 3 10 1
20 4 11 0
21 4 12 0
22 4 13 0
23 4 14 0
24 4 15 0
25 6 16 0
26 6 17 0
27 6 18 0
28 6 19 0
29 6 20 0
30 7 20 1
31 7 20 1
32 7 20 1
33 7 20 1
34 7 20 1
35 8 21 0
36 8 22 0

where the first column is the value of n, the second one the number of trailing zeroes in n!, the
third one the counter of numbers whose quantity of trailing zeroes in their factorial is even. The
last column is the second one modulus 2. The number of zeroes in the fourth column up to n is
the value we are looking for.

The way this sequence of 0s and 1s evolves is what we need to find out in order to compute
the result value given n in a fast way. Let’s see some initial blocks of this sequence, each line
contains 125 digits and each block 625 digits:

0 00000111110000011111000000000011111000001111100000000001111100000111110000000000111110000011111000000000011111000001111100000
125 11111000001111100000111111111100000111110000011111111110000011111000001111111111000001111100000111111111100000111110000011111
250 00000111110000011111000000000011111000001111100000000001111100000111110000000000111110000011111000000000011111000001111100000
375 11111000001111100000111111111100000111110000011111111110000011111000001111111111000001111100000111111111100000111110000011111
500 00000111110000011111000000000011111000001111100000000001111100000111110000000000111110000011111000000000011111000001111100000

625 00000111110000011111000000000011111000001111100000000001111100000111110000000000111110000011111000000000011111000001111100000
750 11111000001111100000111111111100000111110000011111111110000011111000001111111111000001111100000111111111100000111110000011111
875 00000111110000011111000000000011111000001111100000000001111100000111110000000000111110000011111000000000011111000001111100000

1000 11111000001111100000111111111100000111110000011111111110000011111000001111111111000001111100000111111111100000111110000011111
1125 00000111110000011111000000000011111000001111100000000001111100000111110000000000111110000011111000000000011111000001111100000

1250 00000111110000011111000000000011111000001111100000000001111100000111110000000000111110000011111000000000011111000001111100000
1375 11111000001111100000111111111100000111110000011111111110000011111000001111111111000001111100000111111111100000111110000011111
1500 00000111110000011111000000000011111000001111100000000001111100000111110000000000111110000011111000000000011111000001111100000
1625 11111000001111100000111111111100000111110000011111111110000011111000001111111111000001111100000111111111100000111110000011111
1750 00000111110000011111000000000011111000001111100000000001111100000111110000000000111110000011111000000000011111000001111100000

1875 00000111110000011111000000000011111000001111100000000001111100000111110000000000111110000011111000000000011111000001111100000
2000 11111000001111100000111111111100000111110000011111111110000011111000001111111111000001111100000111111111100000111110000011111

5

2125 00000111110000011111000000000011111000001111100000000001111100000111110000000000111110000011111000000000011111000001111100000
2250 11111000001111100000111111111100000111110000011111111110000011111000001111111111000001111100000111111111100000111110000011111
2375 00000111110000011111000000000011111000001111100000000001111100000111110000000000111110000011111000000000011111000001111100000

2500 00000111110000011111000000000011111000001111100000000001111100000111110000000000111110000011111000000000011111000001111100000
2625 11111000001111100000111111111100000111110000011111111110000011111000001111111111000001111100000111111111100000111110000011111
2750 00000111110000011111000000000011111000001111100000000001111100000111110000000000111110000011111000000000011111000001111100000
2875 11111000001111100000111111111100000111110000011111111110000011111000001111111111000001111100000111111111100000111110000011111
3000 00000111110000011111000000000011111000001111100000000001111100000111110000000000111110000011111000000000011111000001111100000

3125 11111000001111100000111111111100000111110000011111111110000011111000001111111111000001111100000111111111100000111110000011111
3250 00000111110000011111000000000011111000001111100000000001111100000111110000000000111110000011111000000000011111000001111100000
3375 11111000001111100000111111111100000111110000011111111110000011111000001111111111000001111100000111111111100000111110000011111
3500 00000111110000011111000000000011111000001111100000000001111100000111110000000000111110000011111000000000011111000001111100000
3625 11111000001111100000111111111100000111110000011111111110000011111000001111111111000001111100000111111111100000111110000011111

3750 11111000001111100000111111111100000111110000011111111110000011111000001111111111000001111100000111111111100000111110000011111
3875 00000111110000011111000000000011111000001111100000000001111100000111110000000000111110000011111000000000011111000001111100000
4000 11111000001111100000111111111100000111110000011111111110000011111000001111111111000001111100000111111111100000111110000011111
4125 00000111110000011111000000000011111000001111100000000001111100000111110000000000111110000011111000000000011111000001111100000
4250 11111000001111100000111111111100000111110000011111111110000011111000001111111111000001111100000111111111100000111110000011111

It can be observed that blocks of a power of 25, in this case 252, follow a pattern, every
10 blocks the second 5 are simmetric respect of the first 5 blocks. This behaviour is repeated
independently of the power of 25, for 251 it can be observed the same behaviour.

0000011111000001111100000 0000011111000001111100000 0000011111000001111100000 0000011111000001111100000 0000011111000001111100000
1111100000111110000011111 1111100000111110000011111 1111100000111110000011111 1111100000111110000011111 1111100000111110000011111

Well, now we have to deduce the amount of zeroes at each block corresponding to a power
of 25. The formula is

xi =
2

5
· 25i + 5 · xi−1

we also have to keep track of the parity in order to use xi or 25i − xi as the number of zeores
(numbers whose factorial has an even number of trailing zeroes).

Then, given n we have to substract 25i while n > 25i and accumulate xi or 25i−xi depending
on the block. This can be discovered thanks to the expression (j mod 10 ≤ 4) combined with
the parity derived from 25i+1. j is the block index at 25i. Initially parity should be zero. Once
n gets lower than 25i we go down to 25i−1 until 250.

9 Problem G: Vivo Parc

Author: Emilio Vivancos
Type: Graph coloring

This is an instance of the graph coloring problem where:

• one enclosure is represented by a node.

• there is a undirected vertex from node "a" to node "b" if enclosure "a" can be seen from
enclosure "b".

• Each species is represented by one color (form 1 to 4).

Due to the low number of nodes, it can be solved using with a backtracking approach.

More information:

• Graph coloring at Wikipedia http://en.wikipedia.org/wiki/Graph_coloring

6

10 Problem H: Binary Tree

Author: Mahbubul Hasan
Type: Dynamic Programming

First lets solve the problem ignoring U instructions. For each element of the T sequence
note the next right children (next R), and next left children (next L). Then we can solve this
with dynammic programming. Recurrence would be: dp[next L] + dp[next R]. Since either I
will goto left / right and same subproblem.

Finally, for each U , we will go up, and use the dp of the previous problem.

11 Problem I: Trending Topic

Author: Jon Ander Gómez
Type: Data structures

Given the amount of words that may appear in the test cases we need a fast way to convert
each word into a integer and perform all the calculations using numbers instead of strings. A
map, hash map or trie is needed for this transformation.

Once we only have numbers, we can use a heap to maintain the ranking of topics. When asked
for the trending topics, we can extract the top K words and all the words the same frequency
as the K-th one. Note that we need a way to update the words inside the heap because we have
to remove the words that appeared 7 days ago.

A slightly faster solution is to have a counter of the times that each word appears and the
list of words in the last 7 days to update the counters appropriately. When we find a <top
k> query, we can calculate the threshold in linear time and then print all the words above this
threshold.

12 Problem J: Cleaning the Hallway

Author: Mahbubul Hasan
Type: Geometry

Slow solution:

This is almost well known union of circle problems. But there is some hole in the circles.
Both are concentric but that is not any special point. We slice up along the x axis. We draw
vertical lines at, x = xi − ri, x = xi + ri for any circle with center (xi, yi) and radius r, also at
x = xj where (xj , yj) is intersection point of any two circles.

Note that, in any slice there is no intersection of the segments. So for each segment, we
check all the circular arcs (up arc and down arc separately) and keep those that are inside the
segment. then we sort these segments from +y to −y. And in stack style we sum up the area.

Fast solution:

Suppose the outer circle is cw oriented and inner circle is ccw oriented. Now we will consider
the circles separately. For each circle, we find intersection points with other rings (not circle).
We omit the parts of the circle that are completely within some rings. To do so, we find out
intersections with outer ring and inner ring, and the portion inside it is omitted. We find out all

7

the n−1 such regions, sort them and find out the total non omitted part. n · log n ·n = n2 · log n.
For each of the non-omitted part we add up their signed sum.

8

